Neuroprotective effects of eliprodil in retinal excitotoxicity and ischemia.

نویسندگان

  • M A Kapin
  • R Doshi
  • B Scatton
  • L M DeSantis
  • M L Chandler
چکیده

PURPOSE To evaluate whether eliprodil (SL82.0715), a NR2B-selective N-methyl-D-aspartate (NMDA) antagonist, is protective of retina subjected to an excitotoxic or ischemic insult. METHODS To evaluate protection against retinal excitotoxicity, eliprodil was administered intraperitoneally before and after the injection of NMDA (5 microl, 20 nmol) into the vitreous of rats. Integrity of the retina was assessed by counting cells in the retinal ganglion cell layer (GCL) and measuring choline acetyltransferase (ChAT) activity. In a subsequent experiment, total retinal ischemia, as measured by a cessation of electroretinographic (ERG) activity, was induced in anesthetized rabbits by elevating intraocular pressure above systolic blood pressure for 65 minutes. After ischemia, recovery of ERG activity was assessed at 24 and 48 hours in animals treated with vehicle or eliprodil (1.0-10.0 mg/kg). RESULTS Intravitreal NMDA injection resulted in a dose-related decrease in cells of the GCL and in ChAT activity. Eliprodil administered intraperitoneally at 10 mg/kg completely prevented the loss of ChAT and the loss of cells in the GCL. Twenty-four hours after retinal ischemia, A and B waves of vehicle-treated animals were suppressed by 60% to 70%. Eliprodil administered intraperitoneally at 10 mg/kg ameliorated the A- and B-wave depression throughout the 48-hour experiment. CONCLUSIONS Eliprodil is neuroprotective of retinae subjected to either an excitotoxic or ischemic challenge and may be useful for treating a variety of retinal and optic nerve head disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protection by eliprodil against excitotoxicity in cultured rat retinal ganglion cells.

PURPOSE To test whether eliprodil (SL 82.0715), a unique antagonist for the N-methyl-D-aspartate (NMDA) receptor, is protective in the glutamate-induced cytotoxicity model in cultured rat retinal ganglion cells (RGCs). METHODS Two to four days after a fluorescent dye, Di-I, was injected near the superior colliculi, neonatal rats were killed, and retinal cells were dissociated and cultured. Su...

متن کامل

Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies.

Various cellular and molecular mechanisms that may lead to apoptotic cell death of retinal ganglion cells in glaucoma are discussed. These cellular mechanisms include neurotrophic factor deprivation, ischemia, glial cell activation, glutamate excitotoxicity, and abnormal immune response. Based on experimental and clinical evidence, the rationale for various neuroprotective strategies is described.

متن کامل

Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat

Objective(s): Some histopathological alterations take place in the ischemic regions following brain ischemia. Recent studies have demonstrated some neuroprotective roles of crocin in different models of experimental cerebral ischemia. Here, we investigated the probable neuroprotective effects of crocin on the brain infarction and histopathological changes after transient model of focal cerebral...

متن کامل

The novel neuroprotective action of sulfasalazine through blockade of NMDA receptors.

Sulfasalazine is widely used to treat inflammatory diseases. Besides anti-inflammatory actions such as blockade of nuclear factor-kappaB and cyclooxygenases, we found that 30 to 1000 micro M sulfasalazine dose dependently blocked N-methyl-D-aspartate receptor-mediated excitotoxicity without intervening kainate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid neurotoxicity. The neurop...

متن کامل

Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats

Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 40 6  شماره 

صفحات  -

تاریخ انتشار 1999